Skip to content. | Skip to navigation

Personal tools

Theme for TIFR Centre For Applicable Mathematics, Bangalore

Navigation

You are here: Home / Events / Random Bernstein-Markov factors

Random Bernstein-Markov factors

Dr. Koushik Ramachandran TIFR-CAM, Bangalore
Speaker
Dr. Koushik Ramachandran TIFR-CAM, Bangalore
When Nov 19, 2018
from 03:15 PM to 04:15 PM
Where LH 006
Add event to calendar vCal
iCal

Abstract: For a polynomial \(P_n\)of degree n, Bernstein's inequality states that \(\|P_n'\| \le n \|P_n\|\) for all \(L^p\) norms on the unit circle \(0<p\le\infty,\) with equality for \(P_n(z)= c z^n.\) We study this inequality for random polynomials, and show that the expected (average) and almost sure value of \(\| P_n' \| /\| P_n\|\) is often different from the classical deterministic upper bound n. In particular, for circles of radii less than one, the ratio \(\| P_n' \|/\| P_n\| \) is almost surely bounded as n tends to infinity, and its expected value is uniformly bounded for all degrees under mild assumptions on the random coefficients. For sup norm on the unit circle, it was known earlier that the asymptotic value of \(\| P_n' \| / \| P_n \| \) in probability is \(n/\sqrt{3},\) and we strengthen this to almost sure limit for \(p=2\). If the radius R of the circle is larger than one, then the asymptotic value of \(\| P_n' \| /\| P_n\|\)in probability \(in/R,\) matching the sharp upper bound for the deterministic case. We also obtain bounds for the case \(p=\infty\) on the unit circle. Based on joint work with Igor Pritsker.

Filed under: